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PROJECT SUMMARY

The engineering development study to follow was written to address the need for a Programmable Rate

Digital Satellite Modem capable of supporting both burst and continuous transmission modes with

either BPSK or QPSK modulation. The preferred implementation technique is an all digital one which

utilizes as much digital signal processing (DSP) as possible. The majority of this report consists

of outlining design trade-offs in each portion of the modulator and demodulator subsystem and of

identifying viable circuit approaches which are easily repeatable, have low implementation losses

and have low production costs.

TECHNICAL AREAS THAT WERE INVESTIGATED UNDER THIS CONTRACT:

- TRANSMIT DSP DATA FILTERS

- TRANSMIT CLOCK SYNTHESIS

- CARRIER SYNTHESIZER

- DEMODULATOR'S AUTOMATIC GAIN CONTROL

- RECEIVE DSP DATA FILTERS

- SATELLITE LINK RF OSCILLATOR PI]ASE NOISE

IMPACT ON CARRIER RECOVERY OF PROGRAMMABLE

RATE DIGITAL SATELLITE MODEMS

- MODEM FREQUENCY CONVERSION AND RECEIVE

SIDE CARRIER SELECTION

CARRIER RECOVERY

TIMING RECOVERY AND DATA SAMPLING
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Figure I. Transmit Data Filter Block Diagram
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Tablel. Number of FIR Coefficients Verses Alpha Factor

Classical Normalized Number Coefficlents

Alpha Transition of Phase Linear

Factor Width Coefficients Requirement

I .0 .5 7.0 7

.9 .45 7.8 9

.8 .4 8.8 9

.7 .35 10.0 ii

.6 .3 11.7 13

.5 .25 14.0 15

.4 .2 17.5 19

.3 .15 23.3 25

.2 .i 35.0 35

.I .05 70.0 71

It is apparent by the data tabulated in Table I that as more restrictions are placed on the amount
of excess bandwidth the DSP filter design must be capable of many more coefficients. It should be

noted that Table 1 above is only an estimation and that depending on the values of the coefficients

selected and the quantization level of the design that these estimates may need to be increased.
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DUAL CONVERSION

Another consideration is the method of modulating the carrier frequency. The simplest method is to

directly modulate the desired IF carrier. In this method the filtered baseband signal is mixed

directly onto the desired carrier and the modulation is complete. A second method, known as dual

conversion, uses a two step approach. In the first step the filtered baseband signal is modulated

onto a fixed carrier, then in a second step an IF synthesizer is used to frequency translate the

modulated spectrum to a particular carrier frequency. Figure reveals the modulation process

known as dual conversion. Notice that this method requires an-_dditional mixer and oscillator,

however it does have advantages over the direct modulation method. One quadrature LO need only to

operate at one frequency, therefore the quadrature can be ideal.
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Figure 4. Dual Conversion Frequency Modulation
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SATELLITE LINK RF OSCILLATOR PHASE NOISE IMPACT ON CARRIER

RECOVERY OF PROGRAMMABLE RATE DIGITAL SATELLITE MODEM

The carrier recovery network used in coherent demodulation of BPSK/QPSK signals must have sufficient

bandwidth to track the phase noise of the down link translated carrier to minimize performance

degradations caused by RMS phase error jitter. On the other hand, the larger this bandwidth the

less signal to noise improvement, i.e., the higher the thermal noise performance degradations at low

Eb/No's. Based upon these conflicting requirements a minimum carrier recovery bandwidth can be

identified which is dependent on the RF frequency band used and the specific carrier recovery

implementation. Once this bandwidth is identified, the respective lower data rate limit can be
identified.

For Ku-Band (14/12 GHz) transmission INTELSAT documents IESS-308 and IESS-405 define worst case

phase noise density masks for earth stations processing digital carriers with data rates up to 2048

KBS. Figures 5 and 6 depict these masks for the spacecraft and earth station frequency converters

respectively. Also shown in Figure 5 is a plot of the composite satellite link For K_ band

operation (30/20 GHz) the composite phase noise density will be shifted higher by aboutA6_8 dB.
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Table 2 from reference

0.707 damping factor.

(1) depicts the magnitude of tracking errors

Table 2

for a second order

_A.SE-[X)CKED TRACKINO OF PHASE NOISE FOR A

PHAs[-LoCKeD Loole wrrll D^MPtNO C ,,I, 0.707.

AND Nose BANDWIDTH B, =" 0.5]0).

Typeof PhaseNoise
Phaxe.No/$e

Spectral Density

Phase Error -- Second-Ordrr

Phase.Locked Loop. ¢ == 0,707

_'o _'/_ G,(f) df¢_¢ I I + (oJl(u,)*

Frequency flicker k. k.. z k.,* 8.71k.

noise 7] _ " (I/0'53)ZB, z " Y

White frequency kb 3.70k_

noise 7-I B.

White phase noise k,, f < J'_ k,f_

loop with

(l) "Digital Communications By Satellite" by James J. Spilker, Jr., 1977 Prentice Ilall. Inc.,

(Pages 336 through 357).
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Inspection of the composite satellite link phase noise spectral density

shown in Figure 5 identifies K A and K c as follows:

and K C =

= - i-_-/ (i0 Hz)

K A = 3.16

(L -I -86dB )
ogl0 i0

-9
K C = 2.51 X 10

Since the plot shows a 10dB/decade not 20dB/decade rolloff between ]00 llz to i00 KHz, a worst case

value of -74dBc/Hz at i KHz will be used to determine K B since this value intersects the composite

curve at the I00 Hz specification point.

TABLE ]

BN (Hz) fit " 25 KHZ

10|lz 7.9 X 10"3RAD

IOOHz !7.9 X IO-3RAD

200Hz 7.9 X IO-3RAD

500HZ !7.9 X IO-3RAD

000Hz 7.8 X 10-3RAD

0001fz 7.6 X IO-3RAD

O00}[z 7.1 X IO-3RAD

IO000Hz 6.1 X 10-3p_j)

°¢C

fH = 50 KHZ

1.12 X I0-2_

1.12 X 10"2_

1.12 X 10-2_

1.12XI0-2_

1.12 X i0"2_

1.09 X I0"2_

1.06 X I0"2_

1.00X10-2_

fll m 100 KHz

1.58XIO'2_E

1.58X10"2_

1.58X10"2_

1.58X10-2_

1.58X10-2_

1.58XI0"2_

1.54XIO'2_D

1.50XIO'2_D

°:A °£B

5.2XI0-1_D

5.2XlO-2_D

2.6X10-2_

1.OX10"2_

5.2X10-3_D

2.6X10"3_

1.0X10-3_

5.2XI0-4_

1.2X10"1_

3.8X10"2_

2.7X10-2_

1.7X10-2_

1.2X10"2_

8.6X10"3_

5.4X10"3_

3.8 X 10"3_

TOTAL - RM5 PHASE JITTER
¢

fl! " 25 KJIZ

5.3 X IO'IRAD

(30.6 ° )

6.5 X IO-2RAD

(3.7")

3.83 X 10-2RA_

(2.2")

2.1 X IO-2RAD

(1.2")

1.5 X IO-2RAD

( 0.87 °)

.18 X IO-2pAD

(0.67")

9.0 X 10-3RAD

( 0.51 °)

7.2 X 10-3RAD

{ 0.41 °)

IH " 50 K}Iz

5.3 X IO-IRAD

(30.6")

6.5 X 10"2RAD

[ 3.7")

3.9 X IO-2RAD

( 2.2 °)

2.27 X IO-2RAD

(1.3")

1.72 X 10-2_D

( 0.99 ° )

1.4 X 10"2RAD

( 0.81 ")

1.2 X IO-2RAD

(0.6B')

1.07 X 10-2RAE

( 0.61"1

f - 100 KHz
H

5.3 X 10-1RAD

(30.6"}

6.63 X 10-2RAI

(3.8")

4.0 X IO-2RAD

(2.3")

2.53 X lO-2p, m

( 1.45 =)

2.05 X IO-2RAI

( 1.2 °)

1.82 X 10"2RA;

(1.04")

1.6 X IO-2RA_

( 0.94 ° )

1.55 X IO'2pJ,_

{ O. Og")

TABLE 3

RMS TRACKII_G PHASE JITTER BE_EEH

KECOVERED CAPRIER AIJD PSK S_GIIAL

VERSUS B14 (PLL NOISE B/,J;DWIDTII)
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CARRIER RECOVERY

INTROD[ICTION

In general, Digital Satellite Modems are characterized by providing the lowest possible Bit Error

Bate (BER) for a given Bit Energy per Noise Density (Eb/No). Typically these modems are implemented

with robust BPSK or QPSK Modulation and high overhead Forward Error Correction such that error-less

performance can be realized over the satellite link which is characterized with high noise.

In order to support this objective, these digital modems utilize Coherent Demodulation and optimum

detection with low implementation losses. Coherent Demodulation is accommodated by multiplying the

received PSK signal with a locally generated recovered carrier replica. This recovered carrier

replica must have sufficient noise improvement quality and precise phase alignment with the specific

PSK modulated signal being processed in order to support low implementation loss BER degradation.

Since PSK is a suppressed carrier type of modulation, some type of non-linear signal processing is

necessary to regenerate a coherent carrier reference. This process is the topic of this memo and is

referred to as "Carrier Recovery".

We initiate our effort in this study area by assessing current and proposed Carrier Recovery

schemes which are viable candidates for BPSK and QPSK Modulation. Next, we turn our attention

to_;ards the s[icclfic requirements of the work study, i.e., a Carrier Recovery implementation which:

l] Supports Programmable Data Rates;

2) Operates with BPSK or QPSK Modulation;

3} Supports both Burst and Continuous Modes of Operation;

4) Minimizes the constraints on Clock Recovery/Bit Synchronization;

5) Allows for digital filtering techniques prior to data detection;

6) Can be implemented with Digital Signal Processing Techniques as com[Jared to Analog Signal

Processing; and

7) Is viable in satellite communications.
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Figure 10a. Demodulator/Remodulator
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TIMING RECOVERY AND DATA SAMPLING

INTRODUCTION

The objective of this section is to identify the most favorable Timing Recovery Technique and its

performance attributes which can be utilized by a Programmable Data Rate Digital Satellite Modem

operating in a Multi-Carrier Transponder environment. We initiate our discussion by identifying the

various types of Timing Recovery Techniques which are described in technic31 literature and used in

digital communications. The operational characteristics and features of each Timing Recovery Scheme

will be presented and a comparison to the study requirements will be made.

A candidate scheme will then be chosen based 'upon the one which offers the most favorable

attributes. The performance impact of the candidate Timing Recovery Scheme on Soft Decision Data

Sampling (detection) will also be assessed.

Lastly, viable hardware design techniques which utilize DSP Technology will be described for the

various functions required in the implementation of the technique. This is concluded with an

overall implementation diagram of the proposed Hardware Timing Recovery approach.
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